Package opennlp.tools.ml.maxent
Class GISModel
- java.lang.Object
-
- opennlp.tools.ml.model.AbstractModel
-
- opennlp.tools.ml.maxent.GISModel
-
- All Implemented Interfaces:
MaxentModel
public final class GISModel extends AbstractModel
A maximum entropy model which has been trained using the Generalized Iterative Scaling procedure (implemented in GIS.java).
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from class opennlp.tools.ml.model.AbstractModel
AbstractModel.ModelType
-
-
Constructor Summary
Constructors Constructor Description GISModel(Context[] params, String[] predLabels, String[] outcomeNames)
Creates a new model with the specified parameters, outcome names, and predicate/feature labels.GISModel(Context[] params, String[] predLabels, String[] outcomeNames, Prior prior)
Creates a new model with the specified parameters, outcome names, and predicate/feature labels.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description static double[]
eval(int[] context, double[] prior, EvalParameters model)
Use this model to evaluate a context and return an array of the likelihood of each outcome given the specified context and the specified parameters.double[]
eval(String[] context)
Use this model to evaluate a context and return an array of the likelihood of each outcome given that context.double[]
eval(String[] context, double[] outsums)
Evaluates a context.double[]
eval(String[] context, float[] values)
Evaluates a contexts with the specified context values.double[]
eval(String[] context, float[] values, double[] outsums)
Use this model to evaluate a context and return an array of the likelihood of each outcome given that context.-
Methods inherited from class opennlp.tools.ml.model.AbstractModel
equals, getAllOutcomes, getBestOutcome, getDataStructures, getIndex, getModelType, getNumOutcomes, getOutcome, hashCode
-
-
-
-
Constructor Detail
-
GISModel
public GISModel(Context[] params, String[] predLabels, String[] outcomeNames)
Creates a new model with the specified parameters, outcome names, and predicate/feature labels.- Parameters:
params
- The parameters of the model.predLabels
- The names of the predicates used in this model.outcomeNames
- The names of the outcomes this model predicts.
-
GISModel
public GISModel(Context[] params, String[] predLabels, String[] outcomeNames, Prior prior)
Creates a new model with the specified parameters, outcome names, and predicate/feature labels.- Parameters:
params
- The parameters of the model.predLabels
- The names of the predicates used in this model.outcomeNames
- The names of the outcomes this model predicts.prior
- The prior to be used with this model.
-
-
Method Detail
-
eval
public final double[] eval(String[] context)
Use this model to evaluate a context and return an array of the likelihood of each outcome given that context.- Parameters:
context
- The names of the predicates which have been observed at the present decision point.- Returns:
- The normalized probabilities for the outcomes given the context. The indexes of the double[] are the outcome ids, and the actual string representation of the outcomes can be obtained from the method getOutcome(int i).
-
eval
public final double[] eval(String[] context, float[] values)
Description copied from interface:MaxentModel
Evaluates a contexts with the specified context values.- Parameters:
context
- A list of String names of the contextual predicates which are to be evaluated together.values
- The values associated with each context.- Returns:
- an array of the probabilities for each of the different outcomes, all of which sum to 1.
-
eval
public final double[] eval(String[] context, double[] outsums)
Description copied from interface:MaxentModel
Evaluates a context.- Parameters:
context
- A list of String names of the contextual predicates which are to be evaluated together.outsums
- An array which is populated with the probabilities for each of the different outcomes, all of which sum to 1.- Returns:
- an array of the probabilities for each of the different outcomes, all of which sum to 1.
-
eval
public final double[] eval(String[] context, float[] values, double[] outsums)
Use this model to evaluate a context and return an array of the likelihood of each outcome given that context.- Parameters:
context
- The names of the predicates which have been observed at the present decision point.outsums
- This is where the distribution is stored.- Returns:
- The normalized probabilities for the outcomes given the context. The indexes of the double[] are the outcome ids, and the actual string representation of the outcomes can be obtained from the method getOutcome(int i).
-
eval
public static double[] eval(int[] context, double[] prior, EvalParameters model)
Use this model to evaluate a context and return an array of the likelihood of each outcome given the specified context and the specified parameters.- Parameters:
context
- The integer values of the predicates which have been observed at the present decision point.prior
- The prior distribution for the specified context.model
- The set of parametes used in this computation.- Returns:
- The normalized probabilities for the outcomes given the context. The indexes of the double[] are the outcome ids, and the actual string representation of the outcomes can be obtained from the method getOutcome(int i).
-
-