opennlp.tools.formats.ad.ADChunkSampleStream(InputStream, String) |
opennlp.tools.formats.ad.ADNameSampleStream(InputStreamFactory, String, boolean) |
opennlp.tools.formats.ad.ADNameSampleStream(InputStream, String, boolean) |
opennlp.tools.formats.ad.ADPOSSampleStream(InputStream, String, boolean, boolean) |
opennlp.tools.formats.ad.ADSentenceSampleStream(FileInputStream, String, boolean) |
opennlp.tools.formats.BioNLP2004NameSampleStream(InputStream, int) |
opennlp.tools.chunker.ChunkerCrossValidator(String, TrainingParameters, ChunkerEvaluationMonitor...)
|
opennlp.tools.chunker.ChunkerEventStream(ObjectStream)
|
opennlp.tools.chunker.ChunkerME(ChunkerModel, int)
beam size is now stored inside the model
|
opennlp.tools.chunker.ChunkerME(ChunkerModel, int, SequenceValidator)
|
opennlp.tools.chunker.ChunkerME(ChunkerModel, int, SequenceValidator, ChunkerContextGenerator)
|
opennlp.tools.chunker.ChunkerModel(String, MaxentModel)
|
opennlp.tools.chunker.ChunkerModel(String, MaxentModel, Map)
|
opennlp.tools.formats.Conll02NameSampleStream(Conll02NameSampleStream.LANGUAGE, InputStream, int) |
opennlp.tools.formats.Conll03NameSampleStream(Conll03NameSampleStream.LANGUAGE, InputStream, int) |
opennlp.tools.namefind.DefaultNameContextGenerator()
use the other constructor and always provide the feature generators
|
opennlp.tools.dictionary.Dictionary(InputStream, boolean)
This constructor is deprecated. Passing the case sensitivity
flag has no effect. Use
Dictionary.Dictionary(InputStream) instead and set the
case sensitivity during the dictionary creation.
|
opennlp.tools.doccat.DoccatModel(String, MaxentModel)
|
opennlp.tools.doccat.DocumentCategorizerME(DoccatModel, FeatureGenerator...)
|
opennlp.tools.formats.EvalitaNameSampleStream(EvalitaNameSampleStream.LANGUAGE, InputStream, int) |
opennlp.tools.parser.lang.en.HeadRules(String) |
opennlp.tools.namefind.NameFinderME(TokenNameFinderModel, AdaptiveFeatureGenerator, int)
the beam size is now configured during training time in the
trainer parameter file via beamSearch.beamSize
|
opennlp.tools.namefind.NameFinderME(TokenNameFinderModel, AdaptiveFeatureGenerator, int, SequenceValidator)
the beam size is now configured during training time in the
trainer parameter file via beamSearch.beamSize
|
opennlp.tools.namefind.NameFinderME(TokenNameFinderModel, int)
the beam size is now configured during training time in the
trainer parameter file via beamSearch.beamSize
|
opennlp.tools.ml.perceptron.PerceptronModel(Context[], String[], Map, String[])
|
opennlp.tools.util.PlainTextByLineStream(FileChannel, Charset)
|
opennlp.tools.util.PlainTextByLineStream(FileChannel, String)
|
opennlp.tools.util.PlainTextByLineStream(InputStream, Charset)
|
opennlp.tools.util.PlainTextByLineStream(InputStream, String)
|
opennlp.tools.util.PlainTextByLineStream(Reader)
|
opennlp.tools.postag.POSDictionary(BufferedReader, boolean)
|
opennlp.tools.postag.POSDictionary(String)
|
opennlp.tools.postag.POSDictionary(String, boolean)
|
opennlp.tools.postag.POSDictionary(String, String, boolean)
|
opennlp.tools.postag.POSModel(String, MaxentModel, POSDictionary, Dictionary)
|
opennlp.tools.postag.POSModel(String, MaxentModel, POSDictionary, Dictionary, Map)
|
opennlp.tools.postag.POSTaggerCrossValidator(String, TrainingParameters, POSDictionary, Dictionary, POSTaggerEvaluationMonitor...)
|
opennlp.tools.postag.POSTaggerCrossValidator(String, TrainingParameters, POSDictionary, Integer, POSTaggerEvaluationMonitor...)
|
opennlp.tools.postag.POSTaggerCrossValidator(String, TrainingParameters, POSDictionary, POSTaggerEvaluationMonitor...)
|
opennlp.tools.postag.POSTaggerME(POSModel, int, int)
the beam size should be specified in the params during training
|
opennlp.tools.namefind.RegexNameFinder(Pattern[]) |
opennlp.tools.sentdetect.SDCrossValidator(String)
|
opennlp.tools.sentdetect.SDCrossValidator(String, TrainingParameters)
|
opennlp.tools.sentdetect.SDCrossValidator(String, TrainingParameters, SentenceDetectorEvaluationMonitor...)
|
opennlp.tools.sentdetect.SentenceDetectorME(SentenceModel, Factory)
|
opennlp.tools.sentdetect.SentenceModel(String, MaxentModel, boolean, Dictionary, char[])
|
opennlp.tools.sentdetect.SentenceModel(String, MaxentModel, boolean, Dictionary, char[], Map)
|
opennlp.tools.tokenize.SimpleTokenizer()
Use INSTANCE field instead to obtain an instance, constructor
will be made private in the future.
|
opennlp.tools.tokenize.TokenizerCrossValidator(String, boolean)
|
opennlp.tools.tokenize.TokenizerCrossValidator(String, boolean, TrainingParameters, TokenizerEvaluationMonitor...)
|
opennlp.tools.tokenize.TokenizerCrossValidator(String, Dictionary, boolean, TrainingParameters, TokenizerEvaluationMonitor...)
|
opennlp.tools.tokenize.TokenizerME(TokenizerModel, Factory)
|
opennlp.tools.tokenize.TokenizerModel(String, AbstractModel, boolean)
|
opennlp.tools.tokenize.TokenizerModel(String, AbstractModel, boolean, Map)
|
opennlp.tools.tokenize.TokenizerModel(String, MaxentModel, Dictionary, boolean, Map)
|