public class QNModel extends AbstractModel
AbstractModel.ModelType| Constructor and Description | 
|---|
QNModel(Context[] params,
       String[] predLabels,
       String[] outcomeNames)  | 
| Modifier and Type | Method and Description | 
|---|---|
static double[] | 
eval(int[] context,
    float[] values,
    double[] probs,
    int nOutcomes,
    int nPredLabels,
    double[] parameters)
Model evaluation which should be used during training to report model accuracy. 
 | 
double[] | 
eval(String[] context)
Evaluates a context. 
 | 
double[] | 
eval(String[] context,
    double[] probs)
Evaluates a context. 
 | 
double[] | 
eval(String[] context,
    float[] values)
Evaluates a contexts with the specified context values. 
 | 
int | 
getNumOutcomes()
Returns the number of outcomes for this model. 
 | 
equals, getAllOutcomes, getBestOutcome, getDataStructures, getIndex, getModelType, getOutcome, hashCodepublic int getNumOutcomes()
MaxentModelgetNumOutcomes in interface MaxentModelgetNumOutcomes in class AbstractModelpublic double[] eval(String[] context)
MaxentModelcontext - A list of String names of the contextual predicates
                which are to be evaluated together.public double[] eval(String[] context, double[] probs)
MaxentModelcontext - A list of String names of the contextual predicates
                which are to be evaluated together.probs - An array which is populated with the probabilities for each of the different
         outcomes, all of which sum to 1.public double[] eval(String[] context, float[] values)
MaxentModelcontext - A list of String names of the contextual predicates
                which are to be evaluated together.values - The values associated with each context.public static double[] eval(int[] context,
                            float[] values,
                            double[] probs,
                            int nOutcomes,
                            int nPredLabels,
                            double[] parameters)
context - Indices of the predicates which have been observed at the present
          decision point.values - Weights of the predicates which have been observed at
          the present decision point.probs - Probability for outcomesnOutcomes - Number of outcomesnPredLabels - Number of unique predicatesparameters - Model parametersCopyright © 2017 The Apache Software Foundation. All rights reserved.