Package | Description |
---|---|
opennlp.tools.chunker |
Package related to finding non-recursive syntactic annotation such as noun phrase chunks.
|
opennlp.tools.doccat |
Package for classifying a document into a category.
|
opennlp.tools.lemmatizer |
Package related with the lemmatizer tool
|
opennlp.tools.ml | |
opennlp.tools.ml.maxent.quasinewton | |
opennlp.tools.ml.model | |
opennlp.tools.ml.naivebayes | |
opennlp.tools.ml.perceptron | |
opennlp.tools.namefind |
Package related to finding proper names and numeric amounts.
|
opennlp.tools.parser |
Package containing common code for performing full syntactic parsing.
|
opennlp.tools.parser.chunking |
Package containing code for performing full syntactic parsing using shift/reduce-style decisions.
|
opennlp.tools.parser.treeinsert |
Package containing experimental code for performing full syntactic
parsing using attachment decisions.
|
opennlp.tools.postag |
Package related to part-of-speech tagging.
|
opennlp.tools.sentdetect |
Package related to identifying sentece boundries.
|
opennlp.tools.tokenize |
Contains classes related to finding token or words in a string.
|
opennlp.tools.util |
Package containing utility data structures and algorithms used by multiple other packages.
|
opennlp.tools.util.model |
Modifier and Type | Method and Description |
---|---|
static ChunkerModel |
ChunkerME.train(String lang,
ObjectStream<ChunkSample> in,
TrainingParameters mlParams,
ChunkerFactory factory) |
Constructor and Description |
---|
ChunkerCrossValidator(String languageCode,
TrainingParameters params,
ChunkerFactory factory,
ChunkerEvaluationMonitor... listeners) |
Modifier and Type | Method and Description |
---|---|
static DoccatModel |
DocumentCategorizerME.train(String languageCode,
ObjectStream<DocumentSample> samples,
TrainingParameters mlParams,
DoccatFactory factory) |
Constructor and Description |
---|
DoccatCrossValidator(String languageCode,
TrainingParameters mlParams,
DoccatFactory factory,
DoccatEvaluationMonitor... listeners)
Creates a
DoccatCrossValidator with the given
FeatureGenerator s. |
Modifier and Type | Method and Description |
---|---|
static LemmatizerModel |
LemmatizerME.train(String languageCode,
ObjectStream<LemmaSample> samples,
TrainingParameters trainParams,
LemmatizerFactory posFactory) |
Modifier and Type | Field and Description |
---|---|
protected TrainingParameters |
AbstractTrainer.trainingParameters |
Modifier and Type | Method and Description |
---|---|
static EventModelSequenceTrainer |
TrainerFactory.getEventModelSequenceTrainer(TrainingParameters trainParams,
Map<String,String> reportMap) |
static EventTrainer |
TrainerFactory.getEventTrainer(TrainingParameters trainParams,
Map<String,String> reportMap) |
static SequenceTrainer |
TrainerFactory.getSequenceModelTrainer(TrainingParameters trainParams,
Map<String,String> reportMap) |
static TrainerFactory.TrainerType |
TrainerFactory.getTrainerType(TrainingParameters trainParams)
Determines the trainer type based on the ALGORITHM_PARAM value.
|
void |
EventModelSequenceTrainer.init(TrainingParameters trainParams,
Map<String,String> reportMap) |
void |
SequenceTrainer.init(TrainingParameters trainParams,
Map<String,String> reportMap) |
void |
AbstractTrainer.init(TrainingParameters trainingParameters,
Map<String,String> reportMap) |
void |
EventTrainer.init(TrainingParameters trainingParams,
Map<String,String> reportMap) |
static boolean |
TrainerFactory.isValid(TrainingParameters trainParams) |
Constructor and Description |
---|
AbstractEventTrainer(TrainingParameters parameters) |
AbstractTrainer(TrainingParameters parameters) |
Modifier and Type | Method and Description |
---|---|
void |
QNTrainer.init(TrainingParameters trainingParameters,
Map<String,String> reportMap) |
Constructor and Description |
---|
QNTrainer(TrainingParameters parameters) |
Modifier and Type | Field and Description |
---|---|
protected TrainingParameters |
AbstractDataIndexer.trainingParameters |
Modifier and Type | Method and Description |
---|---|
static DataIndexer |
DataIndexerFactory.getDataIndexer(TrainingParameters parameters,
Map<String,String> reportMap) |
void |
DataIndexer.init(TrainingParameters trainParams,
Map<String,String> reportMap)
Sets parameters used during the data indexing.
|
void |
AbstractDataIndexer.init(TrainingParameters indexingParameters,
Map<String,String> reportMap) |
Constructor and Description |
---|
NaiveBayesTrainer(TrainingParameters parameters) |
Constructor and Description |
---|
PerceptronTrainer(TrainingParameters parameters) |
Modifier and Type | Method and Description |
---|---|
static TokenNameFinderModel |
NameFinderME.train(String languageCode,
String type,
ObjectStream<NameSample> samples,
TrainingParameters trainParams,
TokenNameFinderFactory factory) |
Constructor and Description |
---|
TokenNameFinderCrossValidator(String languageCode,
String type,
TrainingParameters trainParams,
byte[] featureGeneratorBytes,
Map<String,Object> resources,
SequenceCodec<String> codec,
TokenNameFinderEvaluationMonitor... listeners)
Name finder cross validator
|
TokenNameFinderCrossValidator(String languageCode,
String type,
TrainingParameters trainParams,
byte[] featureGeneratorBytes,
Map<String,Object> resources,
TokenNameFinderEvaluationMonitor... listeners) |
TokenNameFinderCrossValidator(String languageCode,
String type,
TrainingParameters trainParams,
TokenNameFinderFactory factory,
TokenNameFinderEvaluationMonitor... listeners) |
Modifier and Type | Method and Description |
---|---|
static Dictionary |
AbstractBottomUpParser.buildDictionary(ObjectStream<Parse> data,
HeadRules rules,
TrainingParameters params)
Creates a n-gram dictionary from the specified data stream using the specified
head rule and specified cut-off.
|
Constructor and Description |
---|
ParserCrossValidator(String languageCode,
TrainingParameters params,
HeadRules rules,
ParserType parserType,
ParserEvaluationMonitor... monitors) |
Modifier and Type | Method and Description |
---|---|
static ParserModel |
Parser.train(String languageCode,
ObjectStream<Parse> parseSamples,
HeadRules rules,
TrainingParameters mlParams) |
Modifier and Type | Method and Description |
---|---|
static ParserModel |
Parser.train(String languageCode,
ObjectStream<Parse> parseSamples,
HeadRules rules,
TrainingParameters mlParams) |
Modifier and Type | Method and Description |
---|---|
static POSModel |
POSTaggerME.train(String languageCode,
ObjectStream<POSSample> samples,
TrainingParameters trainParams,
POSTaggerFactory posFactory) |
Constructor and Description |
---|
POSTaggerCrossValidator(String languageCode,
TrainingParameters trainParam,
File tagDictionary,
byte[] featureGeneratorBytes,
Map<String,Object> resources,
Integer tagdicCutoff,
String factoryClass,
POSTaggerEvaluationMonitor... listeners)
Creates a
POSTaggerCrossValidator that builds a ngram dictionary
dynamically. |
POSTaggerCrossValidator(String languageCode,
TrainingParameters trainParam,
POSTaggerFactory factory,
POSTaggerEvaluationMonitor... listeners)
Creates a
POSTaggerCrossValidator using the given
POSTaggerFactory . |
Modifier and Type | Method and Description |
---|---|
static SentenceModel |
SentenceDetectorME.train(String languageCode,
ObjectStream<SentenceSample> samples,
boolean useTokenEnd,
Dictionary abbreviations,
TrainingParameters mlParams)
Deprecated.
|
static SentenceModel |
SentenceDetectorME.train(String languageCode,
ObjectStream<SentenceSample> samples,
SentenceDetectorFactory sdFactory,
TrainingParameters mlParams) |
Constructor and Description |
---|
SDCrossValidator(String languageCode,
TrainingParameters params)
|
SDCrossValidator(String languageCode,
TrainingParameters params,
SentenceDetectorEvaluationMonitor... listeners)
Deprecated.
use
SDCrossValidator.SDCrossValidator(String, TrainingParameters, SentenceDetectorFactory,
SentenceDetectorEvaluationMonitor...)
instead and pass in a TrainingParameters object. |
SDCrossValidator(String languageCode,
TrainingParameters params,
SentenceDetectorFactory sdFactory,
SentenceDetectorEvaluationMonitor... listeners) |
Modifier and Type | Method and Description |
---|---|
static TokenizerModel |
TokenizerME.train(ObjectStream<TokenSample> samples,
TokenizerFactory factory,
TrainingParameters mlParams)
Trains a model for the
TokenizerME . |
Constructor and Description |
---|
TokenizerCrossValidator(TrainingParameters params,
TokenizerFactory factory,
TokenizerEvaluationMonitor... listeners) |
Modifier and Type | Method and Description |
---|---|
static TrainingParameters |
TrainingParameters.defaultParams() |
TrainingParameters |
TrainingParameters.getParameters(String namespace) |
Constructor and Description |
---|
TrainingParameters(TrainingParameters trainingParameters) |
Modifier and Type | Method and Description |
---|---|
static TrainingParameters |
ModelUtil.createDefaultTrainingParameters()
Creates the default training parameters in case they are not provided.
|
Copyright © 2017 The Apache Software Foundation. All rights reserved.