Package opennlp.tools.ml.model
Class AbstractModel
- java.lang.Object
- 
- opennlp.tools.ml.model.AbstractModel
 
- 
- All Implemented Interfaces:
- MaxentModel
 - Direct Known Subclasses:
- GISModel,- NaiveBayesModel,- PerceptronModel,- QNModel
 
 public abstract class AbstractModel extends Object implements MaxentModel A basicMaxentModelimplementation.
- 
- 
Nested Class SummaryNested Classes Modifier and Type Class Description static classAbstractModel.ModelType
 - 
Constructor SummaryConstructors Constructor Description AbstractModel(Context[] params, String[] predLabels, String[] outcomeNames)Initializes anAbstractModel.
 - 
Method SummaryAll Methods Instance Methods Concrete Methods Modifier and Type Method Description booleanequals(Object obj)StringgetAllOutcomes(double[] ocs)Retrieves a string matching all the outcome names with all the probabilities produced by theMaxentModel.eval(String[])method.StringgetBestOutcome(double[] ocs)Return the name of the outcome corresponding to the highest likelihood in the parameter ocs.Object[]getDataStructures()Provides the fundamental data structures which encode the maxent model information.intgetIndex(String outcome)Retrieves the index associated with the String name of the given outcome.AbstractModel.ModelTypegetModelType()intgetNumOutcomes()StringgetOutcome(int i)Retrieves the String name of the outcome associated with the indexi.inthashCode()- 
Methods inherited from class java.lang.ObjectgetClass, notify, notifyAll, toString, wait, wait, wait
 - 
Methods inherited from interface opennlp.tools.ml.model.MaxentModeleval, eval, eval
 
- 
 
- 
- 
- 
Constructor Detail- 
AbstractModelpublic AbstractModel(Context[] params, String[] predLabels, String[] outcomeNames) Initializes anAbstractModel.- Parameters:
- params- The- parametersto set.
- predLabels- The predicted labels.
- outcomeNames- The names of the outcomes.
 
 
- 
 - 
Method Detail- 
getBestOutcomepublic final String getBestOutcome(double[] ocs) Return the name of the outcome corresponding to the highest likelihood in the parameter ocs.- Specified by:
- getBestOutcomein interface- MaxentModel
- Parameters:
- ocs- A double[] as returned by the eval(String[] context) method.
- Returns:
- The name of the most likely outcome.
 
 - 
getModelTypepublic AbstractModel.ModelType getModelType() - Returns:
- Retrieves the AbstractModel.ModelType.
 
 - 
getAllOutcomespublic final String getAllOutcomes(double[] ocs) Retrieves a string matching all the outcome names with all the probabilities produced by theMaxentModel.eval(String[])method.- Specified by:
- getAllOutcomesin interface- MaxentModel
- Parameters:
- ocs- A- double[]as returned by the- MaxentModel.eval(String[])method.
- Returns:
- String containing outcome names paired with the normalized
            probability (contained in the double[] ocs) for each one.
 
 - 
getOutcomepublic final String getOutcome(int i) Description copied from interface:MaxentModelRetrieves the String name of the outcome associated with the indexi.- Specified by:
- getOutcomein interface- MaxentModel
- Parameters:
- i- An outcome id.
- Returns:
- Retrieves the name of the outcome associated with that id.
 
 - 
getIndexpublic int getIndex(String outcome) Description copied from interface:MaxentModelRetrieves the index associated with the String name of the given outcome.- Specified by:
- getIndexin interface- MaxentModel
- Parameters:
- outcome- The String name of the outcome for which the index is desired.
- Returns:
- Retrieves the index if the given outcomelabel exists for this model,-1if it does not.
 
 - 
getNumOutcomespublic int getNumOutcomes() - Specified by:
- getNumOutcomesin interface- MaxentModel
- Returns:
- Retrieves the number of outcomes for this model.
 
 - 
getDataStructurespublic final Object[] getDataStructures() Provides the fundamental data structures which encode the maxent model information. Note: This method will usually only be needed byGIS model writers.The following values are held in the Object array which is returned by this method: - Returns:
- An Objectarray with the values as described above.
 
 
- 
 
-