Class QNMinimizer
java.lang.Object
opennlp.tools.ml.maxent.quasinewton.QNMinimizer
Implementation of the
Limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) which
supports L1-, L2-regularization and Elastic Net for solving convex optimization problems.
Usage example:
// Quadratic function f(x) = (x-1)^2 + 10 // f obtains its minimum value 10 at x = 1 Function f = new Function() { @Override public int getDimension() { return 1; } @Override public double valueAt(double[] x) { return StrictMath.pow(x[0]-1, 2) + 10; } @Override public double[] gradientAt(double[] x) { return new double[] { 2*(x[0]-1) }; } }; QNMinimizer minimizer = new QNMinimizer(); double[] x = minimizer.minimize(f); double min = f.valueAt(x);
- See Also:
-
Nested Class Summary
Nested ClassesModifier and TypeClassDescriptionstatic interface
Evaluate the quality of training parameters.static class
L2-regularized objectiveFunction
. -
Field Summary
FieldsModifier and TypeFieldDescriptionstatic final double
static final double
The initial step size:1.0
.static final double
The default L1-cost value is0.0d
.static final double
The default L2-cost value is0.0d
.static final int
The default number of Hessian updates to store is15
.static final int
The default maximum number of function evaluations is30,000
.static final double
The minimum step size:1e-10
.static final int
By default the number of iterations is100
.static final double
-
Constructor Summary
ConstructorsConstructorDescriptionQNMinimizer
(double l1Cost, double l2Cost) Initializes aQNMinimizer
.QNMinimizer
(double l1Cost, double l2Cost, int iterations) Initializes aQNMinimizer
with L1 and L2 parameters.QNMinimizer
(double l1Cost, double l2Cost, int iterations, int m, int maxFctEval) Initializes aQNMinimizer
. -
Method Summary
Modifier and TypeMethodDescriptiondouble[]
Finds the parameters that minimize the objective function.void
setEvaluator
(QNMinimizer.Evaluator evaluator)
-
Field Details
-
CONVERGE_TOLERANCE
public static final double CONVERGE_TOLERANCE- See Also:
-
REL_GRAD_NORM_TOL
public static final double REL_GRAD_NORM_TOL- See Also:
-
INITIAL_STEP_SIZE
public static final double INITIAL_STEP_SIZEThe initial step size:1.0
.- See Also:
-
MIN_STEP_SIZE
public static final double MIN_STEP_SIZEThe minimum step size:1e-10
.- See Also:
-
L1COST_DEFAULT
public static final double L1COST_DEFAULTThe default L1-cost value is0.0d
.- See Also:
-
L2COST_DEFAULT
public static final double L2COST_DEFAULTThe default L2-cost value is0.0d
.- See Also:
-
NUM_ITERATIONS_DEFAULT
public static final int NUM_ITERATIONS_DEFAULTBy default the number of iterations is100
.- See Also:
-
M_DEFAULT
public static final int M_DEFAULTThe default number of Hessian updates to store is15
.- See Also:
-
MAX_FCT_EVAL_DEFAULT
public static final int MAX_FCT_EVAL_DEFAULTThe default maximum number of function evaluations is30,000
.- See Also:
-
-
Constructor Details
-
QNMinimizer
public QNMinimizer() -
QNMinimizer
public QNMinimizer(double l1Cost, double l2Cost) Initializes aQNMinimizer
.- Parameters:
l1Cost
- The L1-regularization cost. Must be equal to or greater than0
.l2Cost
- The L2-regularization cost. Must be equal to or greater than0
.- Throws:
IllegalArgumentException
- Thrown if parameters were invalid.
-
QNMinimizer
public QNMinimizer(double l1Cost, double l2Cost, int iterations) Initializes aQNMinimizer
with L1 and L2 parameters.- Parameters:
l1Cost
- The L1-regularization cost. Must be equal to or greater than0
.l2Cost
- The L2-regularization cost. Must be equal to or greater than0
.iterations
- The maximum number of iterations. Must be greater than0
.- Throws:
IllegalArgumentException
- Thrown if parameters were invalid.
-
QNMinimizer
public QNMinimizer(double l1Cost, double l2Cost, int iterations, int m, int maxFctEval) Initializes aQNMinimizer
.- Parameters:
l1Cost
- The L1-regularization cost. Must be equal to or greater than0
.l2Cost
- The L2-regularization cost. Must be equal to or greater than0
.iterations
- The maximum number of iterations. Must be greater than0
.m
- The number of Hessian updates to store. Must be greater than0
.maxFctEval
- The maximum number of function evaluations. Must be greater than0
.- Throws:
IllegalArgumentException
- Thrown if parameters were invalid.
-
-
Method Details
-
getEvaluator
-
setEvaluator
-
minimize
Finds the parameters that minimize the objective function.- Parameters:
function
- The objectiveFunction
.- Returns:
- The minimizing parameters.
-