Class QNTrainer
java.lang.Object
opennlp.tools.ml.AbstractTrainer
opennlp.tools.ml.AbstractEventTrainer
opennlp.tools.ml.maxent.quasinewton.QNTrainer
- All Implemented Interfaces:
- Trainer,- EventTrainer
- See Also:
- 
Field SummaryFieldsModifier and TypeFieldDescriptionstatic final doubleThe default L1-cost value is0.1d.static final Stringstatic final doubleThe default L2-cost value is0.1d.static final Stringstatic final intThe default number of Hessian updates to store is15.static final Stringstatic final intThe default maximum number of function evaluations is30,000.static final Stringstatic final Stringstatic final intstatic final StringFields inherited from class opennlp.tools.ml.AbstractEventTrainerDATA_INDEXER_ONE_PASS_REAL_VALUE, DATA_INDEXER_ONE_PASS_VALUE, DATA_INDEXER_PARAM, DATA_INDEXER_TWO_PASS_VALUEFields inherited from interface opennlp.tools.ml.EventTrainerEVENT_VALUE
- 
Constructor SummaryConstructorsConstructorDescriptionInitializes aQNTrainer.QNTrainer(int m) Initializes aQNTrainerwith the specified parameterm.QNTrainer(int m, int maxFctEval) Initializes aQNTrainerwith the specified parameters.QNTrainer(TrainingParameters parameters) Initializes aQNTrainerwith the specifiedparameters.
- 
Method SummaryModifier and TypeMethodDescriptiondoTrain(DataIndexer indexer) voidinit(TrainingParameters trainingParameters, Map<String, String> reportMap) booleantrainModel(int iterations, DataIndexer indexer) Trains amodelusing the QN algorithm.voidvalidate()Checks the configuredparameters.Methods inherited from class opennlp.tools.ml.AbstractEventTrainergetDataIndexer, train, trainMethods inherited from class opennlp.tools.ml.AbstractTrainergetAlgorithm, getCutoff, getIterations, getTrainingConfiguration, init
- 
Field Details- 
MAXENT_QN_VALUE- See Also:
 
- 
THREADS_PARAM- See Also:
 
- 
THREADS_DEFAULTpublic static final int THREADS_DEFAULT- See Also:
 
- 
L1COST_PARAM- See Also:
 
- 
L1COST_DEFAULTpublic static final double L1COST_DEFAULTThe default L1-cost value is0.1d.- See Also:
 
- 
L2COST_PARAM- See Also:
 
- 
L2COST_DEFAULTpublic static final double L2COST_DEFAULTThe default L2-cost value is0.1d.- See Also:
 
- 
M_PARAM- See Also:
 
- 
M_DEFAULTpublic static final int M_DEFAULTThe default number of Hessian updates to store is15.- See Also:
 
- 
MAX_FCT_EVAL_PARAM- See Also:
 
- 
MAX_FCT_EVAL_DEFAULTpublic static final int MAX_FCT_EVAL_DEFAULTThe default maximum number of function evaluations is30,000.- See Also:
 
 
- 
- 
Constructor Details- 
QNTrainerpublic QNTrainer()Initializes aQNTrainer.
- 
QNTrainerInitializes aQNTrainerwith the specifiedparameters.- Parameters:
- parameters- The- TrainingParametersto use.
 
- 
QNTrainerpublic QNTrainer(int m) Initializes aQNTrainerwith the specified parameterm.- Parameters:
- m- The number of hessian updates to store.
 
- 
QNTrainerpublic QNTrainer(int m, int maxFctEval) Initializes aQNTrainerwith the specified parameters.- Parameters:
- m- The number of hessian updates to store.
 
 
- 
- 
Method Details- 
initDescription copied from class:AbstractTrainer- Specified by:
- initin interface- Trainer
- Overrides:
- initin class- AbstractTrainer
- Parameters:
- trainingParameters- The- TrainingParametersto use.
- reportMap- The- Mapinstance used as report map.
 
- 
validatepublic void validate()Description copied from class:AbstractTrainerChecks the configuredparameters. If a subclass overrides this, it should callsuper.validate();.- Overrides:
- validatein class- AbstractEventTrainer
 
- 
isSortAndMergepublic boolean isSortAndMerge()- Specified by:
- isSortAndMergein class- AbstractEventTrainer
 
- 
doTrain- Specified by:
- doTrainin class- AbstractEventTrainer
- Throws:
- IOException
 
- 
trainModelTrains amodelusing the QN algorithm.- Parameters:
- iterations- The number of QN iterations to perform.
- indexer- The- DataIndexerused to compress events in memory.
- Returns:
- A trained QNModelwhich can be used immediately or saved to disk using anQNModelWriter.
- Throws:
- IllegalArgumentException- Thrown if parameters were invalid.
 
 
-