public class GISTrainer extends AbstractEventTrainer
ftp://ftp.cis.upenn.edu/pub/ircs/tr/97-08.ps.Z
.
The slack parameter used in the above implementation has been removed by default
from the computation and a method for updating with Gaussian smoothing has been
added per Investigating GIS and Smoothing for Maximum Entropy Taggers, Clark and Curran (2002).
http://acl.ldc.upenn.edu/E/E03/E03-1071.pdf
The slack parameter can be used by setting useSlackParameter
to true.
Gaussian smoothing can be used by setting useGaussianSmoothing
to true.
A prior can be used to train models which converge to the distribution which minimizes the relative entropy between the distribution specified by the empirical constraints of the training data and the specified prior. By default, the uniform distribution is used as the prior.
Modifier and Type | Field and Description |
---|---|
static double |
LOG_LIKELIHOOD_THRESHOLD_DEFAULT |
static String |
LOG_LIKELIHOOD_THRESHOLD_PARAM |
static String |
MAXENT_VALUE |
DATA_INDEXER_ONE_PASS_REAL_VALUE, DATA_INDEXER_ONE_PASS_VALUE, DATA_INDEXER_PARAM, DATA_INDEXER_TWO_PASS_VALUE
ALGORITHM_PARAM, CUTOFF_DEFAULT, CUTOFF_PARAM, ITERATIONS_DEFAULT, ITERATIONS_PARAM, TRAINER_TYPE_PARAM, VERBOSE_DEFAULT, VERBOSE_PARAM
EVENT_VALUE
Constructor and Description |
---|
GISTrainer()
Creates a new
GISTrainer instance which does not print
progress messages about training to STDOUT. |
Modifier and Type | Method and Description |
---|---|
MaxentModel |
doTrain(DataIndexer indexer) |
boolean |
isSortAndMerge() |
void |
setGaussianSigma(double sigmaValue)
Sets whether this trainer will use smoothing while training the model.
|
void |
setSmoothing(boolean smooth)
Sets whether this trainer will use smoothing while training the model.
|
void |
setSmoothingObservation(double timesSeen)
Sets whether this trainer will use smoothing while training the model.
|
GISModel |
trainModel(int iterations,
DataIndexer di)
Train a model using the GIS algorithm.
|
GISModel |
trainModel(int iterations,
DataIndexer di,
int threads)
Train a model using the GIS algorithm.
|
GISModel |
trainModel(int iterations,
DataIndexer di,
Prior modelPrior,
int threads)
Train a model using the GIS algorithm.
|
GISModel |
trainModel(ObjectStream<Event> eventStream)
Train a model using the GIS algorithm, assuming 100 iterations and no
cutoff.
|
GISModel |
trainModel(ObjectStream<Event> eventStream,
int iterations,
int cutoff)
Trains a GIS model on the event in the specified event stream, using the specified number
of iterations and the specified count cutoff.
|
getDataIndexer, isValid, train, train, validate
getAlgorithm, getCutoff, getIterations, init, init
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
init, init
public static final String LOG_LIKELIHOOD_THRESHOLD_PARAM
public static final double LOG_LIKELIHOOD_THRESHOLD_DEFAULT
public static final String MAXENT_VALUE
public GISTrainer()
GISTrainer
instance which does not print
progress messages about training to STDOUT.public boolean isSortAndMerge()
isSortAndMerge
in class AbstractEventTrainer
public MaxentModel doTrain(DataIndexer indexer) throws IOException
doTrain
in class AbstractEventTrainer
IOException
public void setSmoothing(boolean smooth)
smooth
- true if smoothing is desired, false if notpublic void setSmoothingObservation(double timesSeen)
timesSeen
- the "number" of times we want the trainer to imagine
it saw a feature that it actually didn't seepublic void setGaussianSigma(double sigmaValue)
public GISModel trainModel(ObjectStream<Event> eventStream) throws IOException
eventStream
- The EventStream holding the data on which this model will be
trained.IOException
public GISModel trainModel(ObjectStream<Event> eventStream, int iterations, int cutoff) throws IOException
eventStream
- A stream of all events.iterations
- The number of iterations to use for GIS.cutoff
- The number of times a feature must occur to be included.IOException
public GISModel trainModel(int iterations, DataIndexer di)
iterations
- The number of GIS iterations to perform.di
- The data indexer used to compress events in memory.public GISModel trainModel(int iterations, DataIndexer di, int threads)
iterations
- The number of GIS iterations to perform.di
- The data indexer used to compress events in memory.threads
- public GISModel trainModel(int iterations, DataIndexer di, Prior modelPrior, int threads)
iterations
- The number of GIS iterations to perform.di
- The data indexer used to compress events in memory.modelPrior
- The prior distribution used to train this model.Copyright © 2017 The Apache Software Foundation. All rights reserved.