Package opennlp.tools.ml
Class BeamSearch<T>
java.lang.Object
opennlp.tools.ml.BeamSearch<T>
- All Implemented Interfaces:
 SequenceClassificationModel<T>
Performs k-best search over a sequence.
 
This is based on the description in Ratnaparkhi (1998), PhD diss, Univ. of Pennsylvania.
- 
Field Summary
Fields - 
Constructor Summary
ConstructorsConstructorDescriptionBeamSearch(int size, MaxentModel model) Initializes aBeamSearchinstance.BeamSearch(int size, MaxentModel model, int cacheSize) Initializes aBeamSearchinstance. - 
Method Summary
Modifier and TypeMethodDescriptionbestSequence(T[] sequence, Object[] additionalContext, BeamSearchContextGenerator<T> cg, SequenceValidator<T> validator) Computes the best sequence of outcomes based on theMaxentModel.Sequence[]bestSequences(int numSequences, T[] sequence, Object[] additionalContext, double minSequenceScore, BeamSearchContextGenerator<T> cg, SequenceValidator<T> validator) Computes the best sequence of outcomes based on theMaxentModel.Sequence[]bestSequences(int numSequences, T[] sequence, Object[] additionalContext, BeamSearchContextGenerator<T> cg, SequenceValidator<T> validator) Computes the best sequence of outcomes based on theMaxentModel.String[] 
- 
Field Details
- 
BEAM_SIZE_PARAMETER
- See Also:
 
 
 - 
 - 
Constructor Details
- 
BeamSearch
Initializes aBeamSearchinstance.- Parameters:
 size- The size of the beam (k).model- TheMaxentModelfor assigning probabilities to the sequence outcomes.
 - 
BeamSearch
Initializes aBeamSearchinstance.- Parameters:
 size- The size of the beam (k).model- TheMaxentModelfor assigning probabilities to the sequence outcomes.cacheSize- The capacity of theCacheto use.
 
 - 
 - 
Method Details
- 
bestSequences
public Sequence[] bestSequences(int numSequences, T[] sequence, Object[] additionalContext, double minSequenceScore, BeamSearchContextGenerator<T> cg, SequenceValidator<T> validator) Computes the best sequence of outcomes based on theMaxentModel.- Specified by:
 bestSequencesin interfaceSequenceClassificationModel<T>- Parameters:
 numSequences- The number of sequences.sequence- The inputBeamSearchsequence.additionalContext- AnObjectof additional context. This is passed to the context generator blindly with the assumption that the context are appropriate.minSequenceScore- The minimum sequence score to use.cg- Thecontext generatorto use.validator- TheSequenceValidatorto validate sequences.- Returns:
 - The top ranked 
Sequenceof outcomes ornullif no sequence could be found. 
 - 
bestSequences
public Sequence[] bestSequences(int numSequences, T[] sequence, Object[] additionalContext, BeamSearchContextGenerator<T> cg, SequenceValidator<T> validator) Computes the best sequence of outcomes based on theMaxentModel.- Specified by:
 bestSequencesin interfaceSequenceClassificationModel<T>- Parameters:
 numSequences- The number of sequences.sequence- The inputBeamSearchsequence.additionalContext- AnObjectof additional context. This is passed to the context generator blindly with the assumption that the context are appropriate.cg- Thecontext generatorto use.validator- TheSequenceValidatorto validate sequences.- Returns:
 - The top ranked 
Sequenceof outcomes ornullif no sequence could be found. 
 - 
bestSequence
public Sequence bestSequence(T[] sequence, Object[] additionalContext, BeamSearchContextGenerator<T> cg, SequenceValidator<T> validator) Computes the best sequence of outcomes based on theMaxentModel.- Specified by:
 bestSequencein interfaceSequenceClassificationModel<T>- Parameters:
 sequence- The inputBeamSearchsequence.additionalContext- AnObjectof additional context. This is passed to the context generator blindly with the assumption that the context are appropriate.cg- Thecontext generatorto use.validator- TheSequenceValidatorto validate sequences.- Returns:
 - The top ranked 
Sequenceof outcomes ornullif no sequence could be found. 
 - 
getOutcomes
- Specified by:
 getOutcomesin interfaceSequenceClassificationModel<T>- Returns:
 - Retrieves all possible outcomes.
 
 
 -