Class QNTrainer
java.lang.Object
opennlp.tools.ml.AbstractTrainer
opennlp.tools.ml.AbstractEventTrainer
opennlp.tools.ml.maxent.quasinewton.QNTrainer
- All Implemented Interfaces:
- Trainer,- EventTrainer
A Maxent model 
Trainer using L-BFGS algorithm.- See Also:
- 
Field SummaryFieldsModifier and TypeFieldDescriptionstatic final doublestatic final Stringstatic final doublestatic final Stringstatic final intstatic final Stringstatic final intstatic final Stringstatic final Stringstatic final intstatic final StringFields inherited from class opennlp.tools.ml.AbstractEventTrainerDATA_INDEXER_ONE_PASS_REAL_VALUE, DATA_INDEXER_ONE_PASS_VALUE, DATA_INDEXER_PARAM, DATA_INDEXER_TWO_PASS_VALUEFields inherited from class opennlp.tools.ml.AbstractTrainerALGORITHM_PARAM, CUTOFF_DEFAULT, CUTOFF_PARAM, ITERATIONS_DEFAULT, ITERATIONS_PARAM, TRAINER_TYPE_PARAMFields inherited from interface opennlp.tools.ml.EventTrainerEVENT_VALUE
- 
Constructor SummaryConstructors
- 
Method SummaryModifier and TypeMethodDescriptiondoTrain(DataIndexer indexer) voidinit(TrainingParameters trainingParameters, Map<String, String> reportMap) booleantrainModel(int iterations, DataIndexer indexer) Trains a model using the QN algorithm.voidvalidate()Checks the configuredparameters.Methods inherited from class opennlp.tools.ml.AbstractEventTrainergetDataIndexer, train, trainMethods inherited from class opennlp.tools.ml.AbstractTrainergetAlgorithm, getCutoff, getIterations
- 
Field Details- 
MAXENT_QN_VALUE- See Also:
 
- 
THREADS_PARAM- See Also:
 
- 
THREADS_DEFAULTpublic static final int THREADS_DEFAULT- See Also:
 
- 
L1COST_PARAM- See Also:
 
- 
L1COST_DEFAULTpublic static final double L1COST_DEFAULT- See Also:
 
- 
L2COST_PARAM- See Also:
 
- 
L2COST_DEFAULTpublic static final double L2COST_DEFAULT- See Also:
 
- 
M_PARAM- See Also:
 
- 
M_DEFAULTpublic static final int M_DEFAULT- See Also:
 
- 
MAX_FCT_EVAL_PARAM- See Also:
 
- 
MAX_FCT_EVAL_DEFAULTpublic static final int MAX_FCT_EVAL_DEFAULT- See Also:
 
 
- 
- 
Constructor Details- 
QNTrainerpublic QNTrainer()Initializes aQNTrainer.Note: 
 The resulting instance does not print progress messages about training to STDOUT.
- 
QNTrainerInitializes aQNTrainer.- Parameters:
- parameters- The- TrainingParametersto use.
 
- 
QNTrainerpublic QNTrainer(int m) Initializes aQNTrainer.- Parameters:
- m- The number of hessian updates to store.
 
- 
QNTrainerpublic QNTrainer(int m, int maxFctEval) Initializes aQNTrainer.- Parameters:
- m- The number of hessian updates to store.
 
 
- 
- 
Method Details- 
initDescription copied from class:AbstractTrainer- Specified by:
- initin interface- Trainer
- Overrides:
- initin class- AbstractTrainer
- Parameters:
- trainingParameters- The- TrainingParametersto use.
- reportMap- The- Mapinstance used as report map.
 
- 
validatepublic void validate()Description copied from class:AbstractTrainerChecks the configuredparameters. If a subclass overrides this, it should callsuper.validate();.- Overrides:
- validatein class- AbstractEventTrainer
 
- 
isSortAndMergepublic boolean isSortAndMerge()- Specified by:
- isSortAndMergein class- AbstractEventTrainer
 
- 
doTrain- Specified by:
- doTrainin class- AbstractEventTrainer
- Throws:
- IOException
 
- 
trainModelTrains a model using the QN algorithm.- Parameters:
- iterations- The number of QN iterations to perform.
- indexer- The- DataIndexerused to compress events in memory.
- Returns:
- A trained QNModelwhich can be used immediately or saved to disk using anQNModelWriter.
- Throws:
- IllegalArgumentException- Thrown if parameters were invalid.
 
 
-