Package opennlp.tools.ml.maxent
Klasse GISModel
java.lang.Object
opennlp.tools.ml.model.AbstractModel
opennlp.tools.ml.maxent.GISModel
- Alle implementierten Schnittstellen:
MaxentModel
A maximum entropy model which has been trained using the Generalized
Iterative Scaling (GIS) procedure.
- Siehe auch:
-
Verschachtelte Klassen - Übersicht
Von Klasse geerbte verschachtelte Klassen/Schnittstellen opennlp.tools.ml.model.AbstractModel
AbstractModel.ModelType
-
Konstruktorübersicht
Konstruktoren -
Methodenübersicht
Modifizierer und TypMethodeBeschreibungboolean
static double[]
eval
(int[] context, double[] prior, EvalParameters model) Evaluates a context and return an array of the likelihood of each outcome given the specified context and the specified parameters.double[]
Evaluates a context and return an array of the likelihood of each outcome given that context.double[]
Evaluates acontext
.double[]
Evaluates acontext
with the specified contextvalues
.double[]
Evaluates a context and return an array of the likelihood of each outcome given that context.int
hashCode()
Von Klasse geerbte Methoden opennlp.tools.ml.model.AbstractModel
getAllOutcomes, getBestOutcome, getDataStructures, getIndex, getModelType, getNumOutcomes, getOutcome
-
Konstruktordetails
-
GISModel
Initializes aGISModel
with the specified parameters, outcome names, and predicate/feature labels.- Parameter:
params
- Theparameters
of the model.predLabels
- The names of the predicates used in this model.outcomeNames
- The names of the outcomes this model predicts.
-
GISModel
Initializes aGISModel
with the specified parameters, outcome names, and predicate/feature labels.- Parameter:
params
- Theparameters
of the model.predLabels
- The names of the predicates used in this model.outcomeNames
- The names of the outcomes this model predicts.prior
- ThePrior
to be used with this model.
-
-
Methodendetails
-
eval
Evaluates a context and return an array of the likelihood of each outcome given that context.- Parameter:
context
- The names of the predicates which have been observed at the present decision point.- Gibt zurück:
- The normalized probabilities for the outcomes given the context.
The indexes of the double[] are the outcome ids, and the actual
string representation of the outcomes can be obtained from the
method
AbstractModel.getOutcome(int)
.
-
eval
Evaluates acontext
with the specified contextvalues
.- Parameter:
context
- An array of String names of the contextual predicates which are to be evaluated together.values
- The values associated with each context.- Gibt zurück:
- An array of the probabilities for each of the different
outcomes, all of which sum to
1
.
-
eval
Evaluates acontext
.- Parameter:
context
- An array of String names of the contextual predicates which are to be evaluated together.outsums
- An array which is populated with the probabilities for each of the different outcomes, all of which sum to 1.- Gibt zurück:
- An array of the probabilities for each of the different
outcomes, all of which sum to
1
.
-
eval
Evaluates a context and return an array of the likelihood of each outcome given that context.- Parameter:
context
- The names of the predicates which have been observed at the present decision point.outsums
- This is where the distribution is stored.- Gibt zurück:
- The normalized probabilities for the outcomes given the context.
The indexes of the double[] are the outcome ids, and the actual
string representation of the outcomes can be obtained from the
method
AbstractModel.getOutcome(int)
.
-
eval
Evaluates a context and return an array of the likelihood of each outcome given the specified context and the specified parameters.- Parameter:
context
- The integer values of the predicates which have been observed at the present decision point.prior
- The prior distribution for the specified context.model
- The set of parameters used in this computation.- Gibt zurück:
- The normalized probabilities for the outcomes given the context.
The indexes of the double[] are the outcome ids, and the actual
string representation of the outcomes can be obtained from the
method
AbstractModel.getOutcome(int)
.
-
hashCode
public int hashCode()- Setzt außer Kraft:
hashCode
in KlasseAbstractModel
-
equals
- Setzt außer Kraft:
equals
in KlasseAbstractModel
-