Klasse QNModel
java.lang.Object
opennlp.tools.ml.model.AbstractModel
opennlp.tools.ml.maxent.quasinewton.QNModel
- Alle implementierten Schnittstellen:
MaxentModel
A maximum entropy model which has been trained using the Quasi Newton (QN) algorithm.
- Siehe auch:
-
Verschachtelte Klassen - Übersicht
Von Klasse geerbte verschachtelte Klassen/Schnittstellen opennlp.tools.ml.model.AbstractModel
AbstractModel.ModelType -
Konstruktorübersicht
Konstruktoren -
Methodenübersicht
Von Klasse geerbte Methoden opennlp.tools.ml.model.AbstractModel
equals, getAllOutcomes, getBestOutcome, getDataStructures, getIndex, getModelType, getOutcome, hashCode
-
Konstruktordetails
-
QNModel
Initializes aQNModelwith the specified parameters, outcome names, and predicate/feature labels.- Parameter:
params- Theparametersof the model.predLabels- The names of the predicates used in this model.outcomeNames- The names of the outcomes this model predicts.
-
-
Methodendetails
-
getNumOutcomes
public int getNumOutcomes()- Angegeben von:
getNumOutcomesin SchnittstelleMaxentModel- Setzt außer Kraft:
getNumOutcomesin KlasseAbstractModel- Gibt zurück:
- Retrieves the number of outcomes for this model.
-
eval
Evaluates acontext.- Parameter:
context- An array of String names of the contextual predicates which are to be evaluated together.- Gibt zurück:
- An array of the probabilities for each of the different
outcomes, all of which sum to
1.
-
eval
Evaluates acontext.- Parameter:
context- An array of String names of the contextual predicates which are to be evaluated together.probs- An array which is populated with the probabilities for each of the different outcomes, all of which sum to 1.- Gibt zurück:
- An array of the probabilities for each of the different
outcomes, all of which sum to
1.
-
eval
Evaluates acontextwith the specified contextvalues.- Parameter:
context- An array of String names of the contextual predicates which are to be evaluated together.values- The values associated with each context.- Gibt zurück:
- An array of the probabilities for each of the different
outcomes, all of which sum to
1.
-